A Simple Question Answering System

Richard J Cooper and Stefan M Riiger
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, England
s.rueger@doc.ic.ac.uk

Abstract. We describe our simple question answering system written in perl that uses the
CMU Link parser (Sleator and Temperley 1991), Princeton University’s WordNet (Miller 1995),
the REX system for XML parsing (Cameron 1998) and the Managing Gigabyte search engine
(Witten, Moffat and Bell 1999). This work is based on an MSc project (Cooper 2000).

Introduction

The main task of question answering is providing a short answer to a natural-language query
supported by a document in an underlying document collection. Many question-answering sys-
tems approach the problem from an information extraction angle, and ours is no exception.
In the following, we will describe the structure and workings of our system. Section 1 is con-
cerned with the off-line preparation of the documents for the pure information retrieval task of
identifying potentially relevant paragraphs. Section 2 details the question-time processing.

1 Indexing

All documents from the document repository' are cleaned from SGML mark-up to obtain their
raw contents. Dollar and pound signs are replaced by the words dollars and pounds, respectively
(in line with the Financial Times archive which already uses these transformations). The raw
news articles are then split into paragraphs according to the individual newspaper’s indication.
This could be an indentation after a newline (AP newswire, Foreign Broadcast Information
Service and Wall Street Journal), a special marker (San Jose News), the use of a long line per
paragraph (Los Angeles Times), or the fact that a line is not right justified that signifies the
end of a paragraph (Financial Times).

The paragraphs are then fed into the Managing Gigabytes search engine as stand-alone
documents together with the original reference number. In effect, we get a passage retrieval
rather than a document retrieval.

2 Question processing

The actual question processing is executed as a long pipeline of perl modules which use XML, eg,
to mark-up entities or to communicate other information between the modules. At the start of
the pipeline is the question, eg, Q206: How far away is the moon? Figure 1 shows the structure
of the data flow and the modules involved.

!News articles from TIPSTER and TREC CDs, see http://trec.nist.gov

sentence splitter & tokenizer <—(How far away is the moon? J
Y

link parser

Y
guestion focus
Y

answer type

Y
keyword extraction
Y

paragraph retrieval via MG
Y

sentence splitter & tokenizer
Y

candidate answer extraction
v

answer scoring

- V_ 12.1 AP890815-0126 h and moon is about 230,000 miles . But even witho
answer weighting 2 2.1 AP901214-0023 om a distance of 2.33 million miles . One photo sh

v 3 2.1 SIMN91-06343145 moon’ s distance of 240,000 miles , was probably a
4 2.1 LA070789-0127 n altitude of about 57,000 miles . It was discover

answer ranking > |5 1.0 AP890506-0122 ay it was more than 350,000 miles out, streaking a

Figure 1: Question processing: data flow

2.1 Sentence splitter & tokenizer

The sentence splitter and tokenizer are actually implemented as two modules. The first marks
up individual sentences using a set of heuristics for detecting the end of a sentence by a question
mark, an exclamation mark, a full stop (if not preceded by a word in a list of abbreviations, such
as Mr and Mrs), or the end of text. The tokenizer treats certain leading and trailing punctuation
as separate entities, eg, “(”, “[”,)7, “|” or “?”. Words containing digits are separated, if headed
by a currency such as DM or pounds or trailed by an abbreviation such as m. Hence, pounds20m
becomes the tree tokens pounds, 20 and m.

2.2 Link parser

The link parser is used to annotate the structure of the question. The link tree is appended to
the tokenized question. For Q 206, eg, we get the following

<sentence><t n="1">How</t> <t n="2">far</t> <t n="3">away</t> <t n="4">is</t>
<t n="5">the</t> <t n="6">moon</t><t n="7">7</t><parse><pos n="2" pos="a'"/><pos
n="4" pos="v'"/><pos n="6" pos="n"/><link name="Xp" 1="0" r="7"/><link name="Wq"
1="0" r="2"/><link name="PF" 1="2" r="4"/><1link name="MVp" 1="2" r="3"/><1link
name="SIs" 1="4" r="6"/><link name="Ds" 1="5" r="6"/><link name="RW" 1="T7"
r="8"/></parse></sentence>

2.3 Question focus

We identify the following question types which give a fairly clear indication of the type of answer:
when, who, where, whom, why, describe, and define. For example, the answer to a who question
is usually a person or a group of people. Other keywords or question words are less clear about
the expected answer type: what, which, how, and name. For example, consider the following
three what questions: What time is the train arriving?, What city is the train stopping at?, and
What is the name of the driver of the train? This problem can be solved by defining a concept
called question focus. The question focus is a phrase in the question that disambiguates it and
emphasizes the type of answer being expected. For example in the three questions above the
question foci are shown in bold. In the first two cases, the question focus tells us directly that a
time and a city are being looked for. In the third case we know that a driver is a type of person
and hence that a person’s name is being sought. For the purpose of this system the question
focus is defined as the first noun group that is not the word "name” if the question word is of
an ambiguous type.

Normally question words start a question such as when in When was Queen FElizabeth IT
born? However sometimes they do not, eg, In what city is the US Declaration of Independence
located? and Macintosh Computers are made by whom?, and we consider these cases as well.

For question 206, the mark-up <questionFocus><t n="6">moon</t></questionFocus> is
inserted.

2.4 Answer type

Once the focus of the question has been found it is possible to decide what the answer type (or
answer concept) should be. The question’s question word determines how this module uses the
question focus.

2.4.1 When, where, why, describe, define

When, where, why, describe and define are the easiest question words to process. They map
directly into their answer type. The answer types for these question words are time, place,
reason, description and definition, respectively.

2.4.2 Who, whom

In most cases who and whom question words imply an answer concept of person. However, there
are two subtleties that are worth mentioning at this point.

Firstly, who questions could be looking for a group of people. This group could be a named
group: Who won the Premiership? (Manchester Utd) or a list: Who beat Fred in the 100m?
(Tom, Dick and Harry) or a combination: Who beat England in the relay? (America and
Canada). At this stage the system does not correctly handle such questions, instead it always
looks for a single person in response to a who question.

Secondly, there is an important exception to the rule that who questions always have an
answer concept person. Consider, for example, Who is Bill Gates? This is an example of a
who question that is looking for a description rather than a person. Accordingly, the rules
for who and whom have the exception (who|whom) (is|arel|was) ProperNoun which returns
description as the answer type.

2.4.3 What, which, name

What, which, and name question words are extremely ambiguous when it comes to determining
the question’s answer concept. The answer type for these questions depends entirely on the
question focus. The following pseudo-code illustrates the algorithm used:

until (wordNet contains questionFocus or questionFocus = "")
Remove the first word of questionFocus
end until

if (questionFocus = "") then
answerConcept = '"name"
exit

end if

hyponyms = the set of hyponyms of questionFocus from wordNet
if ("person" is in hyponyms) then

answerConcept = "person"
else

answerConcept = questionFocus
end if

Following this idea further, one could also define the answer type as the list of direct hy-
ponyms. Given the question What type of bridge is The Golden Gate Bridge?, the answer type
bridge could be expanded (using WordNet) to include Bailey bridge, cantilever bridge, covered
bridge, drawbridge, lift bridge, footbridge, overcrossing, pedestrian bridge, gangplank, gang-
board, gangway, overpass, flyover, flypast, pontoon bridge, bateau bridge, floating bridge, rope
bridge, steel arch bridge, suspension bridge, trestle bridge, truss bridge, or viaduct.

In our example of Q 206, <answerType t="Length"/> is added to the data stream.

2.4.4 How

With how questions the answer type is defined by what the word after how is — for example:
how old (age), how much (quantity), how long (distance). If the word after how does not match
any of the rules then the default answer type of manner is chosen, as in: How did Socrates die?

2.5 Keyword extraction

Using lists of place names, proper names and first names, entities are recognized and marked up
with special symbols. This is simple non-structured knowledge that goes as far as identifying
UK as a country, London as a city and Tony Blair as a person but the lists do not encode the re-
lationship between these entities (and hence it is not known a priori that London is the capital of
the UK). Recognized entities are among speed, temperature, money, place, city, country, person,
year, time, length, reason, company, number, quoted and name, with the obvious meaning for
the marked-up entity. In order to avoid inferences with potentially predefined SGML tags from
the sources, we use special mark-ups of the form <rjc99Person> Tony Blair </rjc99Person>.

2.6 Paragraph retrieval via Managing Gigabytes

At the document paragraph lookup stage the information of answer type and possible keywords
is used to extract documents (ie paragraphs) from the text database that might contain answers
to the question.

The problem that the lookup stage has to overcome is the balance between getting sufficient
documents to guarantee the presence of the answer and getting too many to process in a timely
fashion. This problem defines the main task of the document paragraph lookup stage, which is
to choose a “good” subset of the possible keywords with which to actually query the database.

This system defines “good” subsets by how many documents they retrieve. It attempts to
find a subset that returns a number of documents within a given bound. As soon as such a
subset is found it is chosen as the final query and the rest of the search is abandoned. If, after a
complete search, no such subset is found, then the subset that is closest to that range is chosen.
It attempts to reduce the amount of searching that need to be done by choosing the most likely
subsets first, as defined by the weights assigned to each keyword. Once it has found a good
subset, this module will query the document paragraph repository for real and add the texts
retrieved to the output stream.

2.7 Candidate answer extraction

The paragraphs extracted from the document repository are sentence-split and tokenized in
preparation for further processing. The Candidate Answer Extraction module’s job is the mark-
up of any regions of the texts that could be answers. The question’s answer concept is looked
up in WordNet and all of its hyponyms are found. A regular expression is then built by taking
the disjunction of those hyponyms and any region of text that matches that regular expression
is marked up as a candidate answer. There are a few exceptions to this rule which are detailed
in the following sections.

2.7.1 Person

If the answer concept is person, the set of hyponyms would includes terms such as consumer,
contestant, coward, creator, defender, guardian, and over 300 other words. This is not the intent
as a person question is looking for a specific name of a person. So in the case of person questions,
the hyponyms set is not computed and a regular expression that matches names is used instead.

2.7.2 Description

Describe, define and some who, whom and what questions result in an answer concept of de-
scription. Unlike answer types such and person and date, descriptions are very hard to define
in terms of what words make them up. Any attempt to mark-up the descriptions in a piece of
text would have to employ much more sophisticated NLP techniques than used in this system.
Consequently, this system uses a much simpler technique to extract regions of text that could
be descriptions. It has been noticed that when an entity is first introduced in a text it is often
followed by a comma and then a description, as in Bill Gates, Head of Microsoft said today ...
In light of this, descriptions are defined as everything between a comma and the next punc-
tuation mark. Then when it comes to scoring the answers, descriptions that are immediately
preceded by the thing that they are describing are scored highly. Even using such a simple and

naive approach, good results are possible. For example, the top answers for the three questions
below are shown in brackets: Who is Steve Jobs? (Co-founder and former chairman of Apple
Computer), Who is Steve Redgrave? (Olympic gold medallist in 1984 and 1988), Who is Nelson
Mandela? (President of the African National Congress).

2.7.3 General Cases

WordNet’s coverage could never be great enough to cover every possible answer, especially with
answer types that could contain an infinite number of answers, such as length. To deal with these
eventualities, many of the common answer types have had extra subtypes added to WordNet
which describe a regular expression for a general case. So, for example, company will match any
of the explicitly named companies or the general case of anything that is a sequence of Proper
Nouns ending in (Ltd|P1lc|Coland Son|...) and length will match any number followed by a
unit of length such as miles, km, ft, etc.

2.8 Answer scoring

Once the candidate answers have been identified, a variety of heuristics are used to evaluate how
likely that candidate is to be the real answer.

The following heuristics are used: (i) score_comma-3-word. If a comma follows the candidate
answer then this score is the number of the three words following the comma that appear in
the question; (ii) score_punctuation. Scores one if a punctuation mark immediately follows the
candidate and zero otherwise; (iii) score_same_sentence. Computes the number of question words
that are in the same sentence as the candidate answer; (iv) score_description_before. If the answer
concept being looked for is a description then this score is the number of words immediately
preceding the candidate answer that appear in the question; (v) score_description_in. Similar to
score_question_before but counting question words that appear in the candidate answer.

Each heuristic is given a unique identifier, and at the end of this process each candidate
will have associated with it a set of (id, score) pairs. Like most other things in this system,
the scoring heuristics are implemented as pipeline modules. Each heuristic is a different module
which scans its input for <ca> tags (for candidate answer), computes the appropriate score and
adds a <score> tag. Each scoring heuristic is completely independent from the rest because, at
this stage of the processing, the scores are being kept separate without regard for a single final
score. This means that the order in which they activate is unimportant and that they can be
removed or new ones added without affecting the others.

2.9 Answer weighting

Once all of the scores have been calculated they need to be combined into one final score. In
this system the final score is simply a linear combination of all of the heuristic scores where
the coefficients have been set by hand to reflect the perceived importance of the various scores:
weight(score_comma_3_word) = 1.2, weight(score_punctuation) = 1.1, weight(score_same_sentence)
= 1.0, weight(score_description_before) = 2.0, weight(score_description_in) = 1.0.

2.10 Answer ranking

Once every candidate answer has a weight they (and some of the characters around them which
are to be used as context in the final answers) are extracted from the text, sorted by weight,
assigned a rank and placed as final answers outside the document text.

At this stage one more thing happens. If the set of answers contains any duplicates then only
the top ranking one is kept and all the other duplicates are removed. There are two possible
modifications that could be made to this process that were considered, but not included in
this version of the system. Firstly, only answers that are identical to higher ranked ones are
removed. Ideally this would be replaced by a more powerful system which removed any answers
that referred to the same entity as the first answer. A strong version of this system would
probably require anaphora resolution of the document collection before they were split into
paragraphs, and hence is beyond the scope of this system.

A weaker version, which removed any answers that probably referred to the same entity as
the first answer, could be implemented using simple rules of abbreviation and word substitution.
For example, Ms. L. Smith could be the same person as Miss Linda Smith, who could also be
just Linda.

Alternatively, as some of the TREC-8 systems suggested, the presence of multiple instances
of the same answer could be used to strengthen the likelihood of that answer being correct. We
did not implement this.

3 Conclusions

Despite the apparent simplicity of our system, it compared favorably against other systems
competing in TREC-9. Little use was made of natural language processing. The link parser
analysis was only used for the proportion of questions that deal with ambiguous answer types;
it was not used for the candidate answer extraction. We did not tune our system much, given
the few training cases from the TREC-8 QA track. Although we did not (yet) carry out a
failure analysis with the TREC-9 questions, we have reason to assume that there is scope for
improvement in changing parameters, introducing a better ranking mechanism, or in deploying
natural-language processing techniques.

References

Cameron, R. D. (1998). REX: XML shallow parsing with regular expressions. Technical Report
1998-17, School of Computing, Simon Fraser University.

Cooper, R. J. (2000). High-Precision Information Retrieval. MSc Thesis, Imperial College.

Miller, G. (1995). WordNet: A lexical database for English. Communications of the
ACM 38(11), 39-41.

Sleator, D. and D. Temperley (1991). Parsing English with a link grammar. Technical Report
CMU-CS-91-196, Computer Science, Canegie Mellon University.

Witten, I. H., A. Moffat and T. C. Bell (1999). Managing Gigabytes. Morgan Kaufmann
Publishers.

Acknowledgements: This work was partially supported by the EPSRC, UK.

